Global Effect of Inauhzin on Human p53-Responsive Transcriptome
نویسندگان
چکیده
BACKGROUND Previously, we reported that Inauhzin (INZ) induces p53 activity and suppresses tumor growth by inhibiting Sirt1. However, it remains unknown whether INZ may globally affect p53-dependent gene expression or not. Herein, we have conducted microarray and real-time PCR analyses of gene expression to determine the global effect of INZ on human p53-responsive transcriptome. METHODOLOGY/PRINCIPAL FINDINGS In this study, we conducted microarray analysis followed by PCR validation of general gene expression in HCT116(p53+/+) and HCT116(p53-/-) cells treated with or without INZ. Microarray data showed that 324 genes were up-regulated by ≥ 2.3-fold and 266 genes were down-regulated by ≥ 2-fold in response to INZ treatment in a p53-dependent manner. GO analysis for these genes further revealed that INZ affects several biological processes, including apoptosis (GO:0006915), cell cycle (GO:0007049), immune system process (GO:0002376), and cell adhesion (GO:0007155), which are in line with p53 functions in cells. Also, pathway and STRING analyses of these genes indicated that the p53-signaling pathway is the most significant pathway responsive to INZ treatment as predicted, since a number of these p53 target genes have been previously reported and some of them were validated by RT-qPCR. Finally, among the 9 tested and highly expressed genes, ACBD4, APOBEC3C, and FLJ14327 could be novel p53 target genes, for they were up-regulated by INZ in HCT116(p53+/+) cells, but not in HCT116(p53-/-) cells. CONCLUSIONS/SIGNIFICANCE From our whole genome microarray analysis followed by validation with RT-qPCR, we found that INZ can indeed induce the expression of p53 target genes at a larger scale or globally. Our findings not only verify that INZ indeed activates the p53 signaling pathway, but also provide useful information for identifying novel INZ and/or p53 targets. The global effect of INZ on human p53-responsive transcriptome could also be instrumental to the future design of INZ clinical trials.
منابع مشابه
Structure and Activity Analysis of Inauhzin Analogs as Novel Antitumor Compounds That Induce p53 and Inhibit Cell Growth
Identifying effective small molecules that specifically target the p53 pathway in cancer has been an exciting, though challenging, approach for the development of anti-cancer therapy. We recently identified Inauhzin (INZ) as a novel p53 activator, selectively and efficiently suppressing tumor growth without displaying genotoxicity and with little toxicity to normal cells. In order to reveal the...
متن کاملA small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53
Although ∼50% of all types of human cancers harbour wild-type TP53, this p53 tumour suppressor is often deactivated through a concerted action by its abnormally elevated suppressors, MDM2, MDMX or SIRT1. Here, we report a novel small molecule Inauhzin (INZ) that effectively reactivates p53 by inhibiting SIRT1 activity, promotes p53-dependent apoptosis of human cancer cells without causing appar...
متن کاملFunctional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53
Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellular genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...
متن کاملDetermination of maximum tolerated dose and toxicity of Inauhzin in mice
Reactivating the tumor suppressor p53 offers an attractive strategy for developing cancer therapy. We recently identified Inauhzin (INZ) as a novel non-genotoxic p53-activating compound. To develop INZ into a clinically applicable anticancer drug, we have initiated preclinical toxicity studies. Here, we report our study on determining the maximum tolerated dose (MTD) of INZ analog, Inauhzin-C (...
متن کاملEffect of Boswellia Thurifera Gum Methanol Extract on Cytotoxicity and P53 Gene Expression in Human Breast Cancer Cell Line
Abstract Boswellia has been widely used in traditional medicine for the treatment of different diseases such as cancer in Iran. The aim of this study was to evaluate the effect of the gum methanol extract of Boswellia thurifera on the viability and P53 gene expression of cultured breast cancer cells. The gum methanol extract was obtained in various concentrations using the maceration method. No...
متن کامل